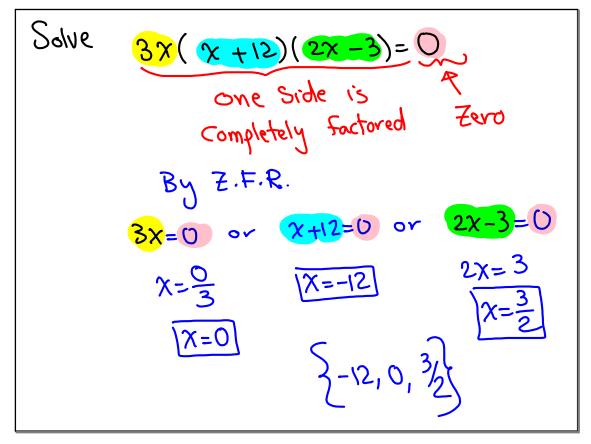
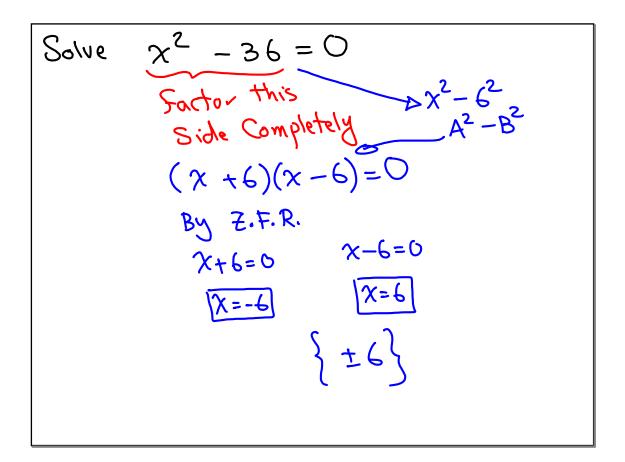

Factor Completely:
(D)
$$\lambda^{4}\chi^{3} - 16\chi^{2}$$

 $= 8\chi^{2}(3\chi - 2)$
(2) $4\chi^{3} - 5\chi^{2} + 8\chi - 10$
 $= \chi^{2}(4\chi - 5) + 2(4\chi - 5)$
 $= (4\chi - 5)(\chi^{2} + 2)$
(3) $3\chi(3\chi + 2) + 2(3\chi + 2)$
 $= (3\chi + 2)(3\chi + 2)$
 $= (3\chi + 2)(3\chi + 2)$
 $= (3\chi + 2)^{2}$
 $= \chi^{2}(4\chi - 5)(\chi^{2} + 2)$
 $= \chi^{2}(4\chi - 5)(\chi^{2} + 2)(\chi^{2} + 2)$
 $= \chi^{2}(4\chi - 5)(\chi^{2} + 2)(\chi^{2} + 2)(\chi^{2} + 2)(\chi^{2} + 2)(\chi^{2} + 2)(\chi^{$

(5) $3\chi^{2} = \chi - (0)$ $P_{z} - 30$ $S_{z} = -1$ $5\xi - 6$ $= (3\chi + 5)(\chi - 2)$ (6) $\chi^{2} - 49$ $A^{2} - B^{2} = (A + B)(A - B)$ $= \chi^{2} - 7^{2}$ $= (\chi + 7)(\chi - 7)$ (7) $\chi^{3} - 36\chi$ (8) $\chi^{2} + (2\chi + 36)$ $= \left[\left(\chi + 6 \right)^2 \right]$ $=\chi(\chi^2-36)$ $-\chi(\chi + 6)(\chi - 6)$ $2(\chi)(\xi) = 12\chi$ $\chi^2 - 36 = 0$ $\chi^{2} - \zeta^{2}$

(f) $\chi^2 + 100$ (10) $\chi^2 = 20\chi + 100$ = χ^2 + (0^2) Prime $A^2 + B^2$ is prime 2(x)(10 (12) χ^{3} + 64 $(11) 4\chi^2 + 20\chi + 25$ $\chi^3 + 4^3$ Use $A^3 + B^3$ (2x + 5) $=(A+B)(A^2-AB+B^2)$ 2(22)(5 $b = \chi^{3} + \chi^{3}$ $= (\chi + 4)(\chi^2 - 4\chi + 16)$



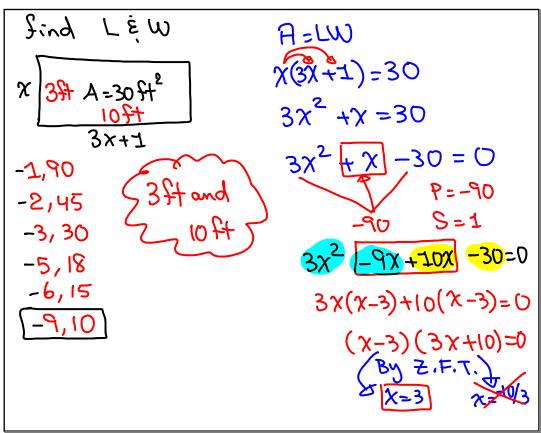

Chass Quiz
Divide:

$$\begin{array}{c}
\frac{45\chi^8 - 15\chi^2}{-3\chi^5} & (z) & \frac{\chi^3 + 2\chi^2 - 5\chi + 2}{\chi - 1} \\
= & \frac{45\chi^8}{-3\chi^5} - \frac{15\chi^2}{-3\chi^5} & \chi - 1 & (\chi^3 + 2\chi^2 - 5\chi + 2) \\
= & \frac{15\chi^3}{-3\chi^5} & \chi - 1 & (\chi^3 - \chi^2) \\
= & \chi - 1 & (\chi^3 + 2\chi^2 - 5\chi + 2) \\
\chi - & \chi - 1 & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi - & \chi - & (\chi^3 - \chi^2) \\
\chi - & \chi$$

$$\frac{Ch.5}{Zero-Product Rule} \quad IF AB=0, thenor : A=0 or B=0Zero-Factor Rule : (Maybe both)Solve $(\chi-3)(\chi+7)=0$
by Z.F.R.
 $\chi-3=0 \text{ or } \chi+7=0$
 $\chi=3 \text{ or } \chi=-7$
 $\chi=3$$$

Solve
$$(2x-5)(3x+8)(x-10)=0$$

Ave Factored Zuro
by Z.F.R.
 $2x-5=0$ or $3x+8=0$ or $x-10=0$
 $2x=5$ $3x=-8$
 $x-5/2$ $x=-9/3$ $x=10$
 $\begin{cases} -8/3, 5/2, 10 \end{cases}$



Solve
$$\chi^2 - 10 = 3\chi$$

(1) Make one Side = 0, and Sactor the other Side
 $\chi^2 - 10 - 3\chi = 0$
 $\chi^2 - 3\chi - 10 = 0$
 $(\chi - 5)(\chi + 2) = 0$
(2) Use Z.F.R. & Solve
 $\chi - 5 = 0$ or $\chi + 2 = 0$
 $[\chi = 5]$ or $[\chi = -2]$
(3) Ans. in Solve. Set $[\chi - 2, 5]$

Solve
$$9\chi^2 + 7\chi = 2$$

() Make one Side = 0, and Sactor the otherside
Completely:
 $9\chi^2 + 7\chi - 2 = 0$
 $P_{=} - 18$
 $S = 7$
 $-1, 18$
 $-2, 7$
 $-1, 18$
 -18
 $\chi(9\chi - 2) + 1(9\chi - 2) = 0$
 $(9\chi - 2)(\chi + 1) = 0$
by $Z \cdot F \cdot R$.
 $9\chi - 2 = 0$
 $\chi = 2$
 $\chi = 2$
 $\chi = 2$
 $\chi = -1$

Solve

$$3\chi^2 + 8\chi - 11 = 13 - 6\chi$$

() Make one Side Zero, and Simplify the other Side.
 $3\chi^2 + 8\chi - 11 - 13 + 6\chi = 0$
 $3\chi^2 + 14\chi - 24 = 0$
(2) Factor Completely the nonzero Side.
 $3\chi^2 + 14\chi - 24 = 0$
(2) Factor Completely the nonzero Side.
 $3\chi^2 + 14\chi - 24 = 3\chi^2 - 4\chi + 18\chi - 24$
 $P_{=}-12$
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12
 -12

